台北2024年6月25日 /美通社/ — 繼今年 6 月份於台北舉辦的COMPUTEX 2024引起AI浪潮後,全球基因定序儀器龍頭企業
Illumina 的副總裁及特聘科學家樊鎧豪博士到台南發表專題演講,暢談如何借助 AI 探索人類基因變異,從而加速新藥開發。
以 AI 辨識人類致病變異,提升藥物發現及臨床試驗成功機率
除了準確分辨人類基因體的變異,樊博士表示 PrimateAl-3D 演算法也有助於突破標靶藥物開發的關鍵瓶頸,從而大幅提高藥物開發和臨床試驗的成功率。以 LDLR 和 CDSK9 這兩個基因為例,它們所編碼的蛋白是與高膽固醇血症和心血管疾病密切相關的生物標記物,透過利用此 AI 演算法推估變異的致病性評分(PrimateAI-3D score),研究人員發現人體內低密度膽固醇(Low-density lipoprotein cholesterol,LDL,即民眾俗稱的「壞膽固醇」)的水平與 LDLR 和 PCSK9 的變異相關。例如當前者的變異得出的 PrimateAI-3D 分數較高,個體血液中的 LDL 膽固醇水平會比低分者為高。至於後者,演算法結果顯示帶有罕見且 PrimateAI-3D 分數較高的變異的個體,其 LDL 膽固醇水平會相對較低。
這些發現將有助科學家更有效找出藥物標靶,繼而開發模仿自然遺傳變異的藥物。事實上,借助 AI 搭配遺傳學分析,團隊已經找出造成 LDL 異常累積的路徑,讓藥廠能夠針對當中的關鍵變異及生物標記物研發標靶療法,估計相關藥物(例如 PCSK9、ANGPTL3/4 或 NPC1L1 的抑制劑)的市場規模達數十億美元計。此外,團隊另一個於 2023 年在《科學》中發表的研究顯示,同樣針對英國生物樣本庫(UK Biobank)中逾 45 萬個個體,PrimateAI-3D 在發現新的藥物標靶方面的表現顯著優於美國某藥廠於 2021 年進行的研究。展望未來,團隊將會與不同的大藥廠以及國家級基因定序計畫合作,期望將演算法的應用範圍從高膽固醇這類比較普遍的健康問題拓展至罕見多發性硬化症、帕金森氏症等相較罕見的疾病。
另一方面,樊博士在演講中也提到「多基因風險評分(Polygenic Risk Score,PRS)」帶來的挑戰。簡單而言,PRS 就是根據個體中多個基因的變異狀況,以統計學方法計算出一個人罹患某種疾病的風險。在罕見變異多基因風險評分(PRS)方面,顯示罕見變異 PRS 能夠有效識別疾病風險最高的個體,特別是膽固醇異常和 2 型糖尿病風險。在跨族群通用性方面,罕見變異 PRS 在非歐洲族群中的表現良好,呈現出比常見變異 PRS 更高的相關性。
AI 基因組學技術長足進步,加速精準醫學時代來臨
隨著機器學習、人工智慧和基因組學技術長足進步,樊博士及其團隊還進一步開發以深度神經網路為基礎的 SpliceAI,可利用 RNA 定序(RNA-seq),針對個別組織或疾病,預測相關的選擇性剪接(Alternative splicing)模式、以及會擾亂基因剪接的非編碼變異(Non-coding variants),並識別病人細胞中異常的剪接問題。現時 SpliceAI 的準確度可達 95%,遠超過現有功能類似的 AI 演算法。以自閉症為例,硏究團隊在 28 名未確診的自閉症患者中,預測了 75% 患者中基因體發生異常剪接的位點。
另一方面,團隊也持續開發新的應用,包括一款名為 perturb-seq 的基因編輯技術。其原理是將每顆細胞視為一個實驗,研究人員將不同基因變異插入單個細胞,讓每顆細胞都帶有一個變異,接下來再以單細胞 RNA 定序分析這些變異如何影響細胞功能,並運用機器學習演算法評估每個變異的致病性。目前團隊已借助此技術成功破解涉及 TP53、CDKN2A 和 SOD1 基因合共逾 5,000 個變異,當中前兩者是常見的腫瘤抑制基因。樊博士認為,這項技術未來可加速罕見疾病的診斷。最後他也表示,隨著精準醫學時代來臨,如何推動群體基因體定序,最終還是有賴人工智慧的技術協助。而 Illumina 亦致力在相關領域提供領先業界的服務和解決方案,協助各大藥廠加速藥物開發。
參考資料:
- https://www.linkedin.com/in/kyle-kai-how-farh-md-phd-8002bba7/
- https://sapac.illumina.com/science/genomics-research/articles/primateai-3d.html
- https://www.primad.basespace.illumina.com
- https://www.ncbi.nlm.nih.gov/clinvar/
- https://www.science.org/doi/10.1126/science.abn8197
- https://www.chop.edu/conditions-diseases/cacna1a-related-disorders
- https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores
- https://www.science.org/doi/10.1126/science.abo1131
- https://www.nature.com/articles/s41586-021-04103-z
台北2024年6月25日 /美通社/ — 繼今年 6 月份於台北舉辦的COMPUTEX 2024引起AI浪潮後,全球基因定序儀器龍頭企業
Illumina 的副總裁及特聘科學家樊鎧豪博士到台南發表專題演講,暢談如何借助 AI 探索人類基因變異,從而加速新藥開發。
以 AI 辨識人類致病變異,提升藥物發現及臨床試驗成功機率
除了準確分辨人類基因體的變異,樊博士表示 PrimateAl-3D 演算法也有助於突破標靶藥物開發的關鍵瓶頸,從而大幅提高藥物開發和臨床試驗的成功率。以 LDLR 和 CDSK9 這兩個基因為例,它們所編碼的蛋白是與高膽固醇血症和心血管疾病密切相關的生物標記物,透過利用此 AI 演算法推估變異的致病性評分(PrimateAI-3D score),研究人員發現人體內低密度膽固醇(Low-density lipoprotein cholesterol,LDL,即民眾俗稱的「壞膽固醇」)的水平與 LDLR 和 PCSK9 的變異相關。例如當前者的變異得出的 PrimateAI-3D 分數較高,個體血液中的 LDL 膽固醇水平會比低分者為高。至於後者,演算法結果顯示帶有罕見且 PrimateAI-3D 分數較高的變異的個體,其 LDL 膽固醇水平會相對較低。
這些發現將有助科學家更有效找出藥物標靶,繼而開發模仿自然遺傳變異的藥物。事實上,借助 AI 搭配遺傳學分析,團隊已經找出造成 LDL 異常累積的路徑,讓藥廠能夠針對當中的關鍵變異及生物標記物研發標靶療法,估計相關藥物(例如 PCSK9、ANGPTL3/4 或 NPC1L1 的抑制劑)的市場規模達數十億美元計。此外,團隊另一個於 2023 年在《科學》中發表的研究顯示,同樣針對英國生物樣本庫(UK Biobank)中逾 45 萬個個體,PrimateAI-3D 在發現新的藥物標靶方面的表現顯著優於美國某藥廠於 2021 年進行的研究。展望未來,團隊將會與不同的大藥廠以及國家級基因定序計畫合作,期望將演算法的應用範圍從高膽固醇這類比較普遍的健康問題拓展至罕見多發性硬化症、帕金森氏症等相較罕見的疾病。
另一方面,樊博士在演講中也提到「多基因風險評分(Polygenic Risk Score,PRS)」帶來的挑戰。簡單而言,PRS 就是根據個體中多個基因的變異狀況,以統計學方法計算出一個人罹患某種疾病的風險。在罕見變異多基因風險評分(PRS)方面,顯示罕見變異 PRS 能夠有效識別疾病風險最高的個體,特別是膽固醇異常和 2 型糖尿病風險。在跨族群通用性方面,罕見變異 PRS 在非歐洲族群中的表現良好,呈現出比常見變異 PRS 更高的相關性。
AI 基因組學技術長足進步,加速精準醫學時代來臨
隨著機器學習、人工智慧和基因組學技術長足進步,樊博士及其團隊還進一步開發以深度神經網路為基礎的 SpliceAI,可利用 RNA 定序(RNA-seq),針對個別組織或疾病,預測相關的選擇性剪接(Alternative splicing)模式、以及會擾亂基因剪接的非編碼變異(Non-coding variants),並識別病人細胞中異常的剪接問題。現時 SpliceAI 的準確度可達 95%,遠超過現有功能類似的 AI 演算法。以自閉症為例,硏究團隊在 28 名未確診的自閉症患者中,預測了 75% 患者中基因體發生異常剪接的位點。
另一方面,團隊也持續開發新的應用,包括一款名為 perturb-seq 的基因編輯技術。其原理是將每顆細胞視為一個實驗,研究人員將不同基因變異插入單個細胞,讓每顆細胞都帶有一個變異,接下來再以單細胞 RNA 定序分析這些變異如何影響細胞功能,並運用機器學習演算法評估每個變異的致病性。目前團隊已借助此技術成功破解涉及 TP53、CDKN2A 和 SOD1 基因合共逾 5,000 個變異,當中前兩者是常見的腫瘤抑制基因。樊博士認為,這項技術未來可加速罕見疾病的診斷。最後他也表示,隨著精準醫學時代來臨,如何推動群體基因體定序,最終還是有賴人工智慧的技術協助。而 Illumina 亦致力在相關領域提供領先業界的服務和解決方案,協助各大藥廠加速藥物開發。
參考資料:
- https://www.linkedin.com/in/kyle-kai-how-farh-md-phd-8002bba7/
- https://sapac.illumina.com/science/genomics-research/articles/primateai-3d.html
- https://www.primad.basespace.illumina.com
- https://www.ncbi.nlm.nih.gov/clinvar/
- https://www.science.org/doi/10.1126/science.abn8197
- https://www.chop.edu/conditions-diseases/cacna1a-related-disorders
- https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores
- https://www.science.org/doi/10.1126/science.abo1131
- https://www.nature.com/articles/s41586-021-04103-z